Effect of weight loss occurring in winter season on growth of sea bass (*Dicentrarchus labrax*) reared in the Black Sea

Kardeniz’ de büyütülen Levrek (*Dicentrarchus labrax*) lerde kış aylarında görülen ağırlık kaybının büyüme üzerine etkisi

Bilal Akbulut and Temel Şahin

Central Fisheries Research Institute, Şana, Trabzon - TURKEY

Abstract:

In this research, growth performance of sea bass (*Dicentrarchus labrax* L., 1758) taken from Bodrum were studied in cages on Eastern Black Sea coast and weight loss of this species in the winter season has been investigated. Fish (n=2000) were stocked in a cage on 03 October 1996 and growth performance was followed until 03 November 1997. Fish were fed by hand three times a day, morning, noon and evening, up to they were satisfied. At monthly intervals, 60 fish were taken as sample and their total lengths and body weights measured to determine growth, food conversion, feeding rates and condition factor. Sea water temperature was measured daily.

In the experiment, fish with initial mean total length of 11.2±0.136 cm, body weight 20.1±0.771 g and condition factor of 1.35 were stocked in a cage and after 424 days at the end of the experiment, mean values of total length, body weight and condition factor were determined as 23.6±0.249 cm, 176.0±6.64 g and 1.30 respectively.

It is observed that growth almost ceased after November when the seawater temperature dropped below 16 °C, the fish have lost weight between December
and April, then growth rate increased depending on rising the seawater temperature.
To conclude, in Eastern Black Sea conditions, sea water temperature seems to be the main factor limiting the growth. However, the cage farming provided with good management may be advisable.

Key Words: Sea Bass, *Dicentrarchus labrax*, Weight loss, Growth, Eastern Black Sea, Cage Culture

Introduction

In recent years, aquaculture activities have been started on the Black Sea coast and many entrepreneurs begun to rear rainbow trout in sea cages, but they have faced important problems in summer when sea water temperature increased above 20 °C. Some of them stopped their activities and others started to find alternative ways and different species. Thus, sea bass as an alternative species has been thought it could be cultured in the brackish water such as Black Sea.

Sea bass (*Dicentrarchus labrax* Linne 1758) belongs to Serranidae family and is a species of *Dicentrarchus* genus. Geographic distribution of sea bass extents from Black Sea to Atlantic, Baltic Sea and even North Sea, but mostly is caught in the Aegean and Mediterranean. Sea bass tolerates temperatures of 5 – 28 °C and salinity of 5 – 50‰. Optimal temperature ranges between 22 – 24 °C for best growing (Benli and Uçal, 1990; Gökoglu and Baran, 1991; Uçal and Benli, 1993).

Nowadays, sea bass have been reared in some private cages in the farms around Trabzon and Ordu on the Black Sea coast. There is not sufficient data on rearing of this species in the subtropical seas such as the Black Sea. Thus, especially such a study is considered to help the practical farming of this species.

In this study, weight loss and growth of the sea bass that reared in cages on Eastern Black Sea coast were investigated and culture potential has been evaluated for this species in the Black Sea.

Material and Method

The study was carried out in marine cages located in Trabzon-Yomra Fisherman Shelter between 03 October 1996 and 03 November 1997.
bass juveniles (n=2000) of 11.2±0.136 cm in length and 20.1±0.771 g in weight were transferred from Bodrum to marine cages belonging to Central Fisheries Research Institute and their growth followed up until 03 November 1997.

The 4x4x3.5 m floating cages were made of timber, galvanised 1 inch pipes and Styrofoam construction supporting 4, 12, 18 and 24 mm mesh knotted nylon nets. Temperature, dissolved oxygen, pH and salinity values were measured daily.

All fish in the stages received a dry pelleted commercial feed of following composition; crude protein 46%, crude fat 10%, crude fibre 3%, ash 13%, calcium 2.2% and phosphate 1.5%. The fish fed at libitum by hand three times a day, up to they were satisfied. Before being weighed and measured, the fish were fasted 24 hours to allow the gut to be emptied. They were anaesthetised in a 1:25000 solution of MS-222 (meta-aminobenzoic ethylester) in water.

At monthly intervals, 60 fish were randomly taken as sample and their lengths were measured by Von Bayer box and weighed by an electronic balance.

Results and Discussion

During this study, maximum monthly average sea water temperature (27.4 °C) was measured in August and minimum average temperature (8.1 °C) was observed in February. Dissolved oxygen concentration was found low (6.06 mg/l) when temperature became maximum and it increased (10.24 mg/l) when temperature decreased in winter season. Salinity changed between 16.52 – 18.11 % and pH ranged 7.88 – 8.28. These salinity values were lower than Aegean and Mediterranean, but not limited growth of sea bass in the Black Sea.

The optimum temperature for growth varies with fish species. In spring and summer, growth rates tend to be high, while in autumn and winter at low temperatures food intake and growth are low and many fish species may loss weight (Bond, 1979; Dobson and Holmes, 1984; Bone et al., 1995).

At the end of growing season, the fish that were 11.2±0.136 cm in length and 20.1±0.771 g in weight with 1.35 condition factor at the beginning,
reached to 23.6±0.249 cm in length and 176.0±6.64 g in weight with 1.30 condition factor after 424 days (Table 1).

Table 1. Growth of sea bass by months

<table>
<thead>
<tr>
<th>Months</th>
<th>(°C)</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean±s.e.</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean±s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>October-96</td>
<td>19.6±0.16</td>
<td>8.7</td>
<td>14.4</td>
<td>11.2±0.136</td>
<td>8</td>
<td>42</td>
<td>20.1±0.77</td>
</tr>
<tr>
<td>November-96</td>
<td>15.6±0.08</td>
<td>10.8</td>
<td>15.3</td>
<td>12.9±0.227</td>
<td>13</td>
<td>49</td>
<td>30.7±1.64</td>
</tr>
<tr>
<td>December-96</td>
<td>11.7±0.20</td>
<td>13</td>
<td>16.4</td>
<td>14.5±0.167</td>
<td>25</td>
<td>58</td>
<td>42.7±1.49</td>
</tr>
<tr>
<td>January-97</td>
<td>9.2±0.06</td>
<td>12.5</td>
<td>17.1</td>
<td>14.5±0.203</td>
<td>22</td>
<td>64</td>
<td>37.5±1.81</td>
</tr>
<tr>
<td>February-97</td>
<td>8.1±0.06</td>
<td>11.1</td>
<td>17.8</td>
<td>14.4±0.301</td>
<td>16</td>
<td>71</td>
<td>37.4±2.34</td>
</tr>
<tr>
<td>March-97</td>
<td>8.3±0.07</td>
<td>12</td>
<td>16.9</td>
<td>14.9±0.217</td>
<td>21</td>
<td>70</td>
<td>34.7±2.07</td>
</tr>
<tr>
<td>April-97</td>
<td>11.9±0.18</td>
<td>10.5</td>
<td>16.8</td>
<td>14.8±0.304</td>
<td>15</td>
<td>62</td>
<td>33.5±2.27</td>
</tr>
<tr>
<td>May-97</td>
<td>16.2±0.16</td>
<td>10.8</td>
<td>18.9</td>
<td>14.9±0.211</td>
<td>14</td>
<td>89</td>
<td>35.2±1.76</td>
</tr>
<tr>
<td>June-97</td>
<td>22.6±0.30</td>
<td>12.5</td>
<td>19.5</td>
<td>15.8±0.186</td>
<td>26</td>
<td>101</td>
<td>51.9±2.36</td>
</tr>
<tr>
<td>July-97</td>
<td>25.3±0.15</td>
<td>13.7</td>
<td>19.3</td>
<td>16.8±0.153</td>
<td>35</td>
<td>82</td>
<td>58.7±1.52</td>
</tr>
<tr>
<td>August-97</td>
<td>27.4±0.12</td>
<td>16</td>
<td>22.6</td>
<td>18.6±0.174</td>
<td>48</td>
<td>154</td>
<td>84.8±3.38</td>
</tr>
<tr>
<td>September-97</td>
<td>24.5±0.10</td>
<td>16</td>
<td>23.2</td>
<td>19.7±0.175</td>
<td>49</td>
<td>151</td>
<td>99.3±3.18</td>
</tr>
<tr>
<td>October-97</td>
<td>20.2±0.16</td>
<td>18.2</td>
<td>27.5</td>
<td>22.1±0.250</td>
<td>77</td>
<td>250</td>
<td>139.3±5.05</td>
</tr>
<tr>
<td>November-97</td>
<td>15.2±0.09</td>
<td>19.2</td>
<td>31</td>
<td>23.6±0.249</td>
<td>101</td>
<td>407</td>
<td>176.0±6.64</td>
</tr>
</tbody>
</table>

In fisheries numerous mathematical formulas have been proposed to describe fish growth, but for commercial farm purposes it is best described in terms of Specific Growth Rate. The most useful and practical expression is that of specific growth rate which is the percentage daily increase in weight. Specific growth rate depends on food intake and so can be adjusted to produce fish for target selling dates. Specific growth rate is also dependent on various environmental factors. Exception occurs when temperature fluctuates with the seasons. Specific growth rate declines in winter and then increases again in spring as water warms up (Dobson and Holmes, 1984; Jackson, 1988; Priede and Secombes, 1988; Bone, 1995).

Gjerdem and Gunnes (1978) have reported that growth of rainbow trout (*Oncorhynchus mykiss*) almost ceased when winter sea water temperatures have fallen below 4 °C for long period and Okumuş et al.
(1987) reported that growth of sea bass (*Dicentrarchus labrax*) almost ceased during winter season, when temperature dropped to 16 °C and that due to long fasting period important losses occurred. The specific growth rate for sea bass, reported by Dendrinos and Thorpe (1985) as 0.75 at 20‰ salinity and 19 °C, Lanari et al., (1991) 0.92 at 14.2‰ salinity and 20.4 °C, Ballestrazzi et al., (1994) 0.57 at 15-20‰ salinity and 17-26 °C in ponds, Korkut et al., (1995) 0.98 in 365 days in cages on the Aegean coast and Okumuş et al.,(1997) 0.37 in tanks on Eastern Black Sea coast.

In this study, specific growth rate was determined as the highest 1.37 in the first 30 days, but a negative SGR has been found between November and April. Average SGR was established as 0.54 and an acceptable growth (SGR ≥ 0.50) considered overall rearing period, although it was negative between November and April when temperature has fallen below 16 °C (Figure 1).

![Figure 1. Specific growth rate of sea bass by months](image)

It is observed that feed conversion varied with temperature in the overall rearing period and food intake almost ceased between November and April. Average FCR were calculated as 2.46 in the overall rearing season. Some authors have reported that FCR were found by Zanuy *et al* (1985) as 1.5 - 3.0 in tanks, Lanari et al (1991) 1.88 in tanks, Korkut *et al* (1995) 2.40 in cages on the Aegean and Okumuş *et al* (1997) 3.0 in tanks in Eastern Black Sea.
Condition factor changed depending to food intake. In this study it ranged between 1.19 and 1.39. Considered results in the overall rearing season, it can be said that the fish got enough food for growing.

In conclusion, it seems that the temperature is the main factor limiting the growth in Eastern Black Sea, especially fish lost weight and negative growth rates occurred in the fasting season including December, January, February and March months when temperature has dropped below 16 °C. This must be taken account when considering overall rearing season. But the phenomenon of weight loss in winter season certainly warrants further investigation.

Özet

Büyüme, yem değerlendirmesi, yemleme oranı ve kondisyon faktörü belirlemek için balıkların total boy ve ağırlıklarını yaklaşık bir aylik aralıklarla 60 adet balık örnek olarak alınmış ve ölçülmuştur. Deniz suyunun sıcaklığı günlük olarak belirlenmiştir.

Denemede ortalama olarak 11.2±0.136 cm total boy, 20.1±0.771 g ağırlık ve 1.35 kondisyon faktörüne sahip balıklar kafese stoklanmış, 424 günlük deneme sonunda ortalama total boy 23.6±0.249 cm, ağırlık 176.0±6.64 g ve kondisyon faktörü 1.30 olarak gerçekleşmiştir.

Kasım aylından sonra deniz suyu sıcaklığı 16 °C’nin alta düşüğünde büyümenin hemen hemen durduğu, balıkların Aralık-Nisan ayları arasında ağırlık kaybına uğradığı, daha sonra su sıcaklığının artması ile büyüme oranında artış olduğu gözlenmiştir.
References

Received: 14.1.1999
Accepted: 9.2.1999