Gas-Charged late Quaternary Sediments in Strait of Çanakkale (Dardanelles)

Gas-charged late quaternary sediments in Strait of Çanakkale (Dardanelles)

Bedri Alpar, Hüseyin Yüce, Ertuğrul Doğan

Istanbul University, Institute of Marine Sciences and Management, 34470 Vefa, Istanbul, TURKEY
Department of Navigation, Hydrography and Oceanography, 81647 Çubuklu, Istanbul, TURKEY

Abstract

The nature of bottom sediments in the Strait of Çanakkale (Dardanelles) depends on the interaction of the channel geometry and flow conditions. The sand-size sediments are found in narrow parts of the strait’s channel where high-energy conditions prevail. Such high-energy flow sections of the channel include the narrows of Çanakkale and Nara. Sand and silty sand are also distributed in narrow bands along both shores of the channel. Terrigenous mud is the major sediment type covering deeper and wider parts of the strait channel where bottom currents are relatively weak. Shallow seismic profiling shows the presence of two main seismic sedimentary sequences in the Dardanelles; late Quaternary sediments and acoustic basement. These are separated by an erosional truncation surface. The late Quaternary sediments consists of at least three sediment sub-units. These sub-units can be interpreted as Holocene posttransgression marine deposits (A1), basinward-prograding deltaic sediments deposited during the Würm glaciation (A2), and basal transgressive marine sediments (A3), possibly Tyrrhenian age. The acoustic basement is formed from the Miocene shallow marine clastic sediments distributed widely on both sides of the strait. The lower two sub-units of the late Quaternary sediments are locally gas-charged in the wider parts of the straits channel. The origin of the gas is not adequately known: it could have heen formed by fermantation reactions during the early diagenesis of sub-unit A3.  The channel of the strait appears to be fault controlled with the faults being generally parallel to the coast. Some faults are still active and cut the late Quaternary sediments.

Keywords: Dardanelles, gas-charged sediments, bottom sediments, shallow seismic

References

Barka, A. (1985). Geologic and tectonic evolution of some Neogene-Quaternary basins in the North Anatolian fault zone. In: Ketin Symposium: Spec. Publ. Geol. Soc. Turkey, 209-227.

Curtis, C.D. (1977). Sedimentary geochemistry: environments and processes dominated by involvement of an aqueous phase. Trans R. Soc. London, (A) 286:353-372.

Defant, A. (1961). Physical Oceanography, V 1, Pergamon, Oxford, 729 p.

Dewey, J.F. and Şengör, A.M.C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Soc. Am. Bull. Part I. 90: 84-92.

Ergin, M., Bodur, M.N. and Ediger, V. (1991). Distribution of surficial shelf sediments in the northeastern and southwestern parts of the Sea of Marmara: Strait and canyon regimes of the Dardanelles and Bosphorus. Marine Geology. Elsevier Science Publishers B.V., 96: 313-340.

Erol, O. (1982). The geomorphological results of the neotectonic movements in the Western Anatolia, Publication of the Turkish Geology Association, Ankara. 15-21.

Erol, O. (1987). Quaternary sealevel changes in the Dardanelles Area, Turkey, University of Ankara, Bulletin of the Faculty of DTC, 60. Anniversary, Ankara, 179-187.

Erol, O. (1992). Geomorphology and tectonics of the Çanakkale Region, Bulletin of Turkish Association of Petroleum Geologists 4 (1): 147-165.

Görür, N., Çağatay, M.N., Sakinç, M., Sümengen, M., Şentürk, K., Yaltırak, C. and Tchapalyga, A. (1997). Origin of the Sea of Marmara as deducted from the Neogene to Quaternary paleogeographic evolution of its frame (lnpress).

Kırca, Z. and Eryılmaz, M. (1991). Grain size sediment distribution map of the Dardanelles (scale 1:75.000) (unpublished).

Memoranda. (1941). To accompany “Density and Current Atlas to the Bosporus and Dardanelles”, Summary of the hydrographical results concerning the Bosporus and Dardanelles, Translation of pages 222 et seq of the Merz/Möller treatise of April 1928, Hydrographic Department, HD.354a: 1- 12.

Merz, A. (1918). Die strömungen des Bosporus und Dardanellen, Verh, Deutsch. Geogr. Tages. 20.

Möller, L. (1928). Alfred Merz’ hydrographische untersuchungen in Bosporus und Dardanellen, Veroff. lnst. Meeresk., Berlin Univ., Neue Folge A. 18: 284 p.

Oğuz, T. and Sur, H.I. (1989). A two-layer model of water exchange through the Dardanelles Strait, Acta 12: 23-31.

Önem, Y. (1974). Geology of the Gelibolu Peninsula and Çanakkale Region, (in Turkish), Turkish Petroleum Company, Ankara, Report No 877: 30 p.

Özsoy, E., Oğuz, T., Latif, M.A., Ünlüata, Ü., Sur, H.l. and Beşiktepe, Ş. (1988). Oceanography of the Turkish Straits, Second Annual Report, Institute of Marine Sciences, METU, I: II 0 p.

Özturan, M. (1996). Çanakkale Boğazı’nda deniz ölçmeleri ve jeofiziği, Yüksek Lisans Tezi, İstanbul Üni., Deniz Bilimleri ve İşletmeciliği Enstitüsü, 82 p.

Penck, W. (1917). Bau – und Oberflachenformen der Dardanellen-landschaft, Zeitschr. d. Ges. f. Erdk., Berlin, 30-49.

Sakınç, M. and Yaltırak, C. (1995). Güney Trakya sahillerinin denizel Pleistosen çökelleri ve paleocoğrafyası. Trakya Havzası Jeolojisi Sempozyumu, TPAO ve Ozan Sungurlu Bilim ve Eğitim Vakfı, Bildiri Özetleri, 38-39.

Saner, S. (1985). Sedimentary sequences and tectonic setting of Saros Gulf area, Northeast Aegean Sea, Turkey, (in Turkish), Bulletin of the Geological Society of Turkey, Ankara, 28: 1- 10.

Siyako, M., Bürkan, K.A. and Okay, A.İ. (1989). Tertiary geology and hydrocarbon potential of the Biga and Gelibolu Peninsulas, Bulletin of the Turkish Association of Petroleum Geologists, 1 (3): 183-199.

Smith, A.D., Taymaz, T., Oktay, F., Yüce, H., Alpar, B., Başaran, H., Jackson, J.A., Kara, S. and Şimşek, M. (1995). High-resolution seismic profiling in the Sea of Marmara (northwest Turkey): Late Quaternary sedimentation and sea-level changes. Geology Society of America Bulletin, 107(8): 923-936.

Sümengen, M., Terlemez. İ., Şentürk, K. and Karaköse, C. (1987). The stratigraphy, sedimentology and tectonics of the Gelibolu Peninsula and the Tertiary Basin at southwestern Thrace, (in Turkish), Mineral Research and Exploration Institute of Turkey, Ankara, Report no 8128.

Şengör, A.M.C. (1982). Ege’nin neotektonik evrimini yöneten etkenler. Batı Anadolu’ nun Genç Tektoniği ve Volkanizması Paneli (Eds.: O. Erol ve V. Oygür). Türkiye Jeoloji Kurumu, Ankara, 59-72.

Şengör, A.M.C., Görür, N. and Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. in Biddle, (Eds.: K.T. and Christie Blick, N.), Strike-slip deformation, basin formation and sedimentation. Society of Economic Palaeontologists and Mineralogists Spec. Publ. 37: 227-264.

Şentürk, K., Karaköse, C., Atalay, Z., Gürbüz, M., Ünay, E., Doruk, N and Batum, I. (1987). Çanakkale ve dolayının jeolojisi. MTA Jeoloji Etüdleri Dairesi Raporu, No.371.

Ünlüata, Ü., Oğuz, T., Latif, M.A. and Özsoy, E. (1990). On the physical oceanography of the Turkish Straits, The Physical Oceanography of Sea Straits, Kluwer Academic Publishers, Netherland, 25-60.

van Andel, T. and Lianos, N. (1984). High-resolution seismic reflection profiles for the reconstruction of postglacial transgressive shorelines: An example from Greece. Quaternary Research, 22: 3 1-45.

Yaltırak, C. (1995). Tectonic mechanism controlling the Plio-Quaternary sedimentation in the Gelibolu Peninsula. Jeofizik, The Chamber of Geophysical Engineers of Turkey, 9(1-2): 103-106.